Skip to main content

Overview

Conductor provides three RAG implementations to fit different needs:

Which RAG Should I Use?

Use AutoRAG if:

  • ✅ You want the easiest setup
  • ✅ Your documents are in R2
  • ✅ You want automatic updates
  • ✅ You don’t need custom chunking logic
Perfect for: Knowledge bases, documentation search, FAQ systems

Use Vectorize-RAG if:

  • ✅ You need custom chunking strategies
  • ✅ You want manual control over embeddings
  • ✅ You need specific metadata schemas
  • ✅ You’re building complex RAG pipelines
Perfect for: Advanced RAG, custom workflows, specialized domains

Use Generic RAG if:

  • ✅ You’re using a non-Cloudflare vector database
  • ✅ You need maximum flexibility
  • ✅ You have existing RAG infrastructure
Perfect for: Multi-cloud, migrations, custom vector DBs

Quick Comparison

FeatureAutoRAGVectorize-RAGGeneric RAG
SetupMinimalModerateManual
Document IngestionAutomaticManualManual
ChunkingAutomaticManualManual
EmbeddingAutomaticManualManual
UpdatesAutomaticManualManual
ControlLowHighMaximum
Best ForQuick startCustomizationIntegration

Examples

AutoRAG (Easiest)

- member: search
  type: AutoRAG
  config:
    instance: my-docs
    mode: answer
  input:
    query: ${input.question}

Vectorize-RAG (Flexible)

- member: search
  type: VectorizeRAG
  config:
    vectorizeBinding: VECTORIZE
    indexName: custom-index
    operation: query
  input:
    query: ${input.question}
    topK: 5
    filters:
      category: ${input.category}

Generic RAG (Universal)

- member: search
  type: RAG
  config:
    provider: pinecone
    apiKey: ${env.PINECONE_KEY}
  input:
    query: ${input.question}

Get Started

AutoRAG Quickstart

Start with the easiest option - AutoRAG setup in 2 minutes